Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE

NAME

CENTRE NUMBER

CHEMISTRY

9701/34
Paper 3 Advanced Practical Skills 2
May/June 2017
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 14 and 15.
A copy of the Periodic Table is printed on page 16.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

This document consists of $\mathbf{1 4}$ printed pages and $\mathbf{2}$ blank pages.

1 Strong acids, such as hydrochloric acid, HCl , are completely ionised in aqueous solution. Weak acids, such as ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, are partially ionised in aqueous solution.

You will investigate the enthalpy change for the reaction of an excess of each of these acids with magnesium and hence determine the energy needed to cause the weak acid to ionise completely.

(a) Reaction 1 Enthalpy change of a weak acid

FB 1 is ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$.
FB 2 is magnesium, Mg .

Method 1

- Weigh the strip of magnesium and record the balance reading in the space below.
- Support the plastic cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Coil the magnesium ribbon loosely so that it fits into the bottom of the plastic cup and then remove the ribbon.
- Use the measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of the acid, FB 1, into the plastic cup.
- Place the thermometer in the acid and read the initial temperature. This is the temperature at time zero $(t=0)$.
- Start timing and do not stop the clock until the whole experiment has been completed.
- Read the temperature of the acid every half minute for two minutes.
- At time $t=2 \frac{1}{2}$ minutes drop the magnesium, FB 2, into the acid and stir the mixture.
- Measure and record, in the table below, the temperature of the mixture at $t=3$ minutes and then every half minute until $t=10$ minutes. Stir the mixture continuously between thermometer readings.
- Rinse the plastic cup for use in Method 2. Shake to remove excess water.

Results

Mass of magnesium

Temperature

time $/$ minutes	0	$\frac{1}{2}$	1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	3	$3 \frac{1}{2}$	4	$4 \frac{1}{2}$	5
temperature $/{ }^{\circ} \mathrm{C}$											

time $/$ minutes	$5 \frac{1}{2}$	6	$6 \frac{1}{2}$	7	$7 \frac{1}{2}$	8	$8 \frac{1}{2}$	9	$9 \frac{1}{2}$	10
temperature $/{ }^{\circ} \mathrm{C}$										

I	
II	
III	
IV	

(b) Plot a graph of temperature on the y-axis against time on the x-axis on the grid below. The scale for temperature should extend $10^{\circ} \mathrm{C}$ above your highest recorded temperature. You will use this graph to determine the theoretical maximum temperature rise at $2 \frac{1}{2}$ minutes.

I	
II	
III	
IV	
V	

Draw two lines of best fit through the points on your graph. The first line should be for the temperature before adding FB 2 and the second for the cooling of the mixture once the reaction is complete.

Extrapolate the two lines to $2 \frac{1}{2}$ minutes, draw a vertical line between the two and determine the theoretical rise in temperature at this time.
(c) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.

Magnesium reacts with ethanoic acid according to the equation shown.

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow \mathrm{Mg}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

(i) Use your answer to (b) to calculate the heat energy, in joules, given out when FB 2 is added to the acid.
[Assume 4.2 J of heat energy raises the temperature of $1.0 \mathrm{~cm}^{3}$ of the mixture by $1.0^{\circ} \mathrm{C}$.]
heat energy evolved $=$
(ii) Use the Periodic Table on page 16 and your answer to (i) to calculate the enthalpy change, in kJmol^{-1}, when 1 mole of FB 2, Mg, reacts with ethanoic acid.
enthalpy change, $\Delta H=$ \qquad
(sign) (value)

(d) Reaction 2 Enthalpy change of a strong acid.

FB 3 is hydrochloric acid, HCl .

The tube labelled FB 4 contains two strips of magnesium, Mg. One strip is longer than the other strip.

Method 2

Read the whole method before starting any practical work and prepare a table for your results in the space below.

- Weigh the longer strip of magnesium and record the balance reading.
- Support the plastic cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Coil the magnesium ribbon loosely so that it fits into the bottom of the plastic cup and then remove the ribbon.
- Use the measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of the acid, FB 3, into the plastic cup.
- Place the thermometer in the acid and measure and record the initial temperature of the acid.
- Add the piece of magnesium into the acid in the cup.
- Stir constantly until the maximum temperature is reached.
- Measure and record the maximum temperature.
- Rinse the plastic cup for use in the next experiment.
- Calculate and record the temperature rise.
- Repeat this experiment using the shorter strip of magnesium and record all results.

(e) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.

Use your results from (d) for the longer strip of magnesium and the Periodic Table on page 16 to calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, when 1 mole of $\mathrm{FB} 4, \mathrm{Mg}$, reacts with hydrochloric acid.
[Assume 4.2 J of heat energy changes the temperature of $1.0 \mathrm{~cm}^{3}$ of the mixture by $1.0^{\circ} \mathrm{C}$.]

$$
\text { enthalpy change, } \Delta H \underset{\text { (sign) }}{=\underset{\text { (value) }}{\text {........................... } \mathrm{kJ} \mathrm{~mol}^{-1}} \mathrm{~m}^{-1} .}
$$

(f) (i) A student suggested that the experiment carried out in (d) could be improved by using a catalyst.

Would the use of a catalyst improve the accuracy of the results in this experiment? Give a reason for your answer.
\qquad
\qquad
\qquad
(ii) Another student could not find the hydrochloric acid, FB 3 , so used sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, instead. He used the same volume and the same concentration as the hydrochloric acid in FB 3.

What effect would this change have on the temperature rise in the experiment? Give a reason for your answer.
\qquad
\qquad
\qquad
(g) Ethanoic acid is a weak acid. It is partially ionised in aqueous solution.

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

You are to determine the energy needed to cause the molecules of ethanoic acid to ionise completely.

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

Hydrochloric acid is a strong acid; it is fully ionised in aqueous solution.
The values for the enthalpy changes you obtained in (c)(ii) and (e) could be used to calculate the energy change for the ionisation but more accurate experiments give the results in Table 1.

Table 1

reaction	equation	$\Delta H / \mathrm{kJmol}^{-1}$
1	$\mathrm{Mg}(\mathrm{s})+2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow{\mathrm{Mg}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})}^{-460.3}$	
2	$\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$	-464.1

(i) Write the ionic equation, including state symbols, for the reaction of magnesium with aqueous hydrochloric acid.
\qquad
(ii) Use the data in Table 1 to calculate the enthalpy change for the ionisation of ethanoic acid.

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

Show clearly how you obtained your answer.

$$
\Delta H=\underset{\text { (sign) }}{\ldots} \quad \underset{\text { (value) }}{\ldots . ~} \mathrm{kol}^{-1}
$$

(h) The experiment in (a) was repeated using trichloroethanoic acid instead of ethanoic acid.

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{CCl}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow{\mathrm{Mg}\left(\mathrm{CCl}_{3} \mathrm{COO}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \quad \text { reaction } 3}^{2}
$$

Trichloroethanoic acid, $\mathrm{CCl}_{3} \mathrm{COOH}$, is a weak acid that is however stronger than ethanoic acid.
The enthalpy change for reaction 3 is between the two values given in Table 1.

Table 1

reaction	equation	$\Delta H / \mathrm{kJ} \mathrm{mol}^{-1}$
1	$\mathrm{Mg}(\mathrm{s})+2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow{\mathrm{Mg}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})}^{-460.3}$	
2	$\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$	-464.1

(i) Explain why the enthalpy change for reaction 3 is more exothermic than the enthalpy change for reaction 1.
\qquad
\qquad
(ii) Explain why the enthalpy change for reaction 3 is less exothermic than the enthalpy change for reaction 2.
\qquad
\qquad

2 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
(a) (i) FB 5, FB 6 and FB 7 each contain one anion and one cation.

Carry out the following tests and record your observations.

test	observations		
	FB 5	FB 6	FB 7
To a 1 cm depth of solution in a test-tube, add a few drops of aqueous silver nitrate, then			
add aqueous ammonia.			
To a 1 cm depth of solution in a test-tube, add a few drops of aqueous barium nitrate, or barium chloride, then			
add dilute nitric acid.			

(ii) What cation is present in FB 5, FB 6 and FB 7?
(iii) Suggest another test that you could carry out to confirm the presence of the cation you identified in (ii).

Carry out this test on one of FB 5, FB 6 or FB 7 and record your observation.
test \qquad
observation
(iv) Complete the table to identify, as far as possible, the anions present in FB 5, FB 6 and FB 7. If you are not able to identify the anion from the tests you carried out in (i), write 'unknown'.

	FB 5	FB 6	FB 7
ion present			

(v) For any one anion that you were unable to identify in (iv) you are to devise a test or tests that will enable you to identify it. You can assume that it is one of the anions listed in the Qualitative Analysis Notes.

Carry out the test(s), record the observation(s) you obtained and identify the unknown anion.
test(s) \qquad
\qquad
\qquad
observation(s) \qquad
\qquad
\qquad
Anion present in is \qquad
(b) FB 8 is an aqueous solution of a mixture containing two anions and two cations.

Carry out the following tests and record your observations.

test		observations
To a 1 cm depth of FB 8 in a test-tube, add a 1 cm depth of dilute hydrochloric acid, then		
add a few drops of hydrogen peroxide, then		
add a few drops of starch.		
To a 1 cm depth of FB 8 in a test-tube, add aqueous sodium hydroxide.		
To a 1 cm depth of FB 8 in a test-tube, add a 3cm depth of aqueous copper(II) sulfate, then		
add a 1 cm depth of dilute hydrochloric acid, then		

From these observations, identify two ions present in FB 8.
ions present in FB 8
and
[Total: 15]

BLANK PAGE

BLANK PAGE

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\mathrm{Ca}^{2+}(\mathrm{aq})$]	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, Br-(aq)	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}{ }^{-}(\mathrm{qq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-(\mathrm{aq})}$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

The Periodic Table of Elements

$\therefore 工 ⿻ コ 一 𠃌 ⿻ 上 丨$	®．
	8 ¢ 4 ¢
す O－	\＆¢ ¢ 咅
	д ح
	$\% \frac{0}{2}$

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cie．org．uk after the live examination series．

